

Terrain Attribute Soil Mapping for Functional Property Maps

Zamir Libohova ^{1, 2}
Phillip R. Owens ¹
Edwin H. Winzeler ¹
Travis Neely ²
John Hempel ³

¹ Purdue University, West Lafayette, Indiana

² State Soil Scientist/MO Leader, USDA-NRCS-Soil Survey Program, Indianapolis, Indiana

³ USDA-NRCS-NGDC, Morgan Town, West Virginia

Cooperators

- Purdue University, Department of Agronomy
- USDA-NRCS, Soil Survey Program, Indiana
 - Kevin Norwood;
 - Stephen Norm
 - John Allen;
- USDA-ARS, National Soil Erosion Laboratory
 - Diane Stott

Rationale and Background

- The completion of the initial Soil Survey for the United States is projected around 2010;
- The launching of Web Soil Survey (WSS) and other on-line soil information;
- New high resolution spatial data and spatial analysis software.

Gilpin Soil Value Range: 11 - 15

Zanesville Soil Value Range: 9 – 12

Polygons

- Discreet boundaries
- Broken interconnectedness
- Vague predictions (value ranges)
- Incompatibility with raster-based models
- Simplicity of representation, complexity of interpretation

Rasters

- Fuzzy boundaries
- High degree of interconnectedness
- Specific predictions at specific geographic intervals
- High compatibility with raster models
- Complexity of representation, simplicity of interpretation

TASM Processes

Data Mining from digital and analog sources to establish soil-landscape relationships

Quantifying relationships between soils and their environment (Terrain Attributes)

Formalizing
the relationships
between soils and
Terrain Attributes
(Rules)

Creating
Rater based
maps
and Predicted
Soil Property
maps

- County Soil Survey;
- OSD;
- SSURGO;
- Aerial Photography;
- DEM Terrain Attributes;
- Tacit Knowledge;
- Field data and observations;
- Block Diagrams.

TWI;

- Slope;
- Curvature;
- Valley Bottom Flattens;
- Ridgetop Flattenss;
- Soil Knowledge miner;
- Histograms

Decisions Tree for terrain/soil relationships for each relevant terrain attribute:

- IF..THEN..EITHER/OR
- IF Slope < 10 THEN Soil A;
- IF TWI > 10 THEN Soil B;
- IF Slope < 10 AND >15 and
- TWI<5 AND >10 THEN Soil C.

Assign a property value for each soil;

- Depth to Limiting Layer Available Water Holding Capacity; etc.
- Based on Fuzzy membership values predict the soil property (V_{ij}) at ij location;

$$V_{ij}$$
) at ij locatio
$$V_{ij} = \frac{\sum_{k=1}^{n} S_{ij}^{k} \bullet V^{K}}{\sum_{k=1}^{n} S_{ij}^{k}}$$

 S_{ij} — assigned property value; S_{ij}^{k} — fuzzy membership value.

TASM Principle

Soil-Water Relationships

TASM Principle

Terrain Attributes Soil Relationships

Zanesville

MRRTF > 2.4 MRVBF < 2.9

Slope 6-12 %

Gilpin

MRRTF < 2.4

MRVBF < 2.9 **←**

Slope 12-18 %

Gilpin-Berks complex

MRRTF < 2.4

MRVBF < 2.9

Slope 18-50 %

AACH 0.5-2.0

Cuba

MRRTF < 2.4

MRVBF < 2.9

Slope 0-2 %

AACH > 0.09

TWI <12

Tilsit

MRRTF > 2.4

MRVBF < 2.9

Slope < 2%

Map Unit

Tilsit_Bedford_Apallona_Johbsburg 0-2

Tilsit_Bedford_Apallona 2-6

Zanesville_Apallona_Wellston 6-12

Gilpin_Wellstone_Adyeville_Ebal 12-18

Gilpin_Ebal_Berks 18-50

Pekin_Bartle 2-12

Cuba 0-2

Steff_Stendal_Burnside_Wakeland 0-2

Rock Outcrop_Sttep Slope > 50

- Tilsit_Bedford_Apallona_Johbsburg 0-2
- Tilsit_Bedford_Apallona 2-6
- Zanesville_Apallona_Wellston 6-12
- Gilpin_Wellstone_Adyeville_Ebal 12-18
- Gilpin_Ebal_Berks 18-50
- Pekin_Bartle 2-12
- Cuba 0-2
- Steff_Stendal_Burnside_Wakeland 0-2
- Rock Outcrop_Sttep Slope > 50

Depth (cm)

High: 200.

Low : 20

Validation

Analysis of Variance Results

Source of Variability	F Value	P Value	Statistical Differences
Landscape position (LP)	19.6	< 0.0001	Significant
Method (TASM vs. Measured)	4.22	0.04	Marginal
LP*Method	1.72	0.18	Not significant

Legend

Draft10_SM_Sliver

Value

- Fincastle New America Flute Starks - New America Flute
- Treaty New America Flute
- Pella Floodplain
- Ockley Floodplain
- Miami Flood plain
- Morley Floodplain
- Genessee/Shoals Shoals/Genessee
- Palms Muck/Histosol
- Houghton Muck/Histosol
- Water/Mine Spoil
- Water/Mine Spoil
- Crosby high elevation Russiaville
- Fincastle low elevation Russiaville
- Starks high elevation Russiaville
- Starks low elevation Russiaville
- Brookston low elevation Russiaville
- Brookston high elevation Russiaville
- Pella Russiaville
- Crosby South Kokomo
- Starks South Kokomo
- Brookston South Kokomo
- Pella South Kokomo
- Alfiso I 1 Washboard Moraine
- Alfosol 2 Washboard Moraine
- Shallow Mollisol Washboard Moraine
- Deep Mollisol Washboard Moraine
- Alfiso I 1- Union City Moraine
- Alfiso 12 Union City Moraine
- Alfiso 12 eroded Union City Moraine
- Shallow Mollisol Union City Moraine
- Deep Mollisol Union City Moraine
- Blount East of Moraine
- Blount eroded East of Moraine
- Pewamo East of Moraine
- Pewamo cumulic East of Moraine

12 3 6 18 24

■ Kilom eters

The Accuracy assessment results of validation between TASM (Producer) and SSURGO (User), for the main soil series

Soil Series	Accuracy (%)		
	Producer	User	
Fincastle	0.87	0.92	
Brookston	0.90	0.77	
Crosby	0.90	0.78	
Blount	0.68	0.84	
Powamo	0.61	0.36	
Shoals	0.21	0.37	
Morley	0.20	1	
Patton	1	1	
Miami	1	0.09	
Overall Accuracy (%)	0.77		

Validation based on 460 geo-referenced points

The kappa coefficient was 0.74 suggesting that the substantial agreement between TASM and SSURGO was not random

<u>карра</u>	<u>Interpretation</u>
< 0 —	No agreement
0.0 — 0.20	Slight agreement
0.21 — 0.40	Fair agreement
0.41 — 0.60	Moderate agreement
0.61 — 0.80	Substantial agreement
0.81 — 1.00	Almost perfect agreement

Conclusions

- We have the tools to map gradations of soil variability;
- Terrain attributes are useful for estimating soil properties;
- Structural heterogeneity of soils can be simplified for hydrological response predictions because of functional homogeneity of soil properties.